A Thermodynamically-based Network Model for Intermittency during Multiphase Flow in Porous Media

Ademola Isaac Adebimpe

Multiphase Darcy's law:

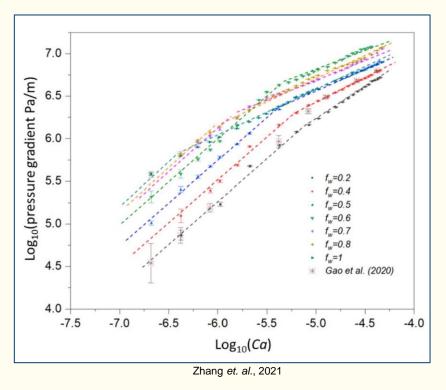
$$\vec{v_i} = \frac{Kk_i^r}{\mu_i}(\Delta p_i - \rho_i \vec{g})$$

- Fluid flow through porous media is modelled using the twophase extension of the Darcy's law.
- There is a linear relationship between pressure gradient and flow velocity.
- Interface between fluid phases at a fixed saturation is invariant.
- The flow of a phase through the porous media occurs only through an established flow pathway.

Recent Findings

However, recent experimental studies in relation to nonlinear intermittent flow behaviours during multiphase fluid flow in porous media established the following:

 At fixed average fluid saturations, the arrangement of fluid phases is dynamic (Tallakstad et al., 2009a & 2009b).



- There is a transition from a linear flow regime to a nonlinear flow regime as flow rate increases (Spurin et al., 2019; Gao et al., 2020).
- Relationship between capillary number and pressure gradient at certain range of flow rates becomes nonlinear (Zhang et al., 2021).

Fluid Intermittency

Non-linear relationship between pressure gradient and capillary number is attributed to fluid intermittency.

This is the periodic disconnecting and reconnecting of the nonwetting phase along flow pathways.

$$Ca = \frac{q_t}{\sigma(\frac{1-f_w}{\mu_{nw}} + \frac{f_w}{\mu_w})}$$

Disconnection of the non-wetting phase occurs after a series of snap-off events along the flow pathways.

$$M = \frac{\mu_{nw}}{\mu_w}$$

Fluid intermittency is caused by the nonwetting phase periodically finding more conductive pathways through the pore space.

$$f_w = q_w/q_t$$

The interplay of viscous and capillary forces largely determines the occurrence of intermittent flow.

 $\nabla P \sim Ca^a$

- Intermittent pathway flow is controlled by:
 - Capillary number Viscosity ratio
 - Pore geometry Wettability

Thermodynamically-based Network Model

 An analogy between thermodynamics and immiscible fluid flow in porous media could be used to study nonlinear flow behaviours (Hansen et al., 2022).

$$P_{filling} = z \exp^{\left(-\frac{\Delta E}{c}\right)}$$

 Insights will be taken from the thermodynamic formulation of multiphase flow proposed by Hansen and colleagues.

$$\Delta E_{Drainage} = P_c^D - P_c^*$$

 A new traditional quasi-static pore-scale network model will be first developed.

$$\Delta E_{Imb} = P_c^* - P_c^I$$

 Modification to a probabilistic dynamic pore-scale network model will then be done.

$$P_{filling} = \frac{\exp^{\left(-\frac{P_c^* - P_c^I}{c}\right)}}{\exp^{\left(-\frac{P_c^* - P_c^I}{c}\right)} + \exp^{\left(-\frac{P_c^D - P_c^*}{c}\right)}}$$

$$z = \frac{1}{\exp^{\left(-\frac{P_c^* - P_c^I}{c}\right)} + \exp^{\left(-\frac{P_c^D - P_c^*}{c}\right)}}$$

Capillary pressure computations

Capillary-dominated displacement (Drainage)

Circular:

$$P_c = \frac{2\sigma\cos\theta_r}{r}$$

Angular:

$$P_c = \frac{\sigma(1 + 2\sqrt{\pi G})\cos\theta_r F_d(\theta_r, G)}{r}$$

$$F_d(\theta_r, G) = \frac{1 + \sqrt{1 + 4GD/\cos^2\theta_r}}{1 + 2\sqrt{\pi G}}$$

Capillary-dominated displacement (Imbibition)

Piston-like:

$$P_c = \frac{\sigma(1 + 2\sqrt{\pi G})\cos\theta_A F_d(\theta_A, G)}{r} \equiv \frac{\sigma\cos\theta_A}{r} C_{It}$$

Snap-off:

$$P_c = \frac{\sigma \cos \theta_A}{r} (1 - \tan \theta_A \tan \beta)$$

Pore-body filling:

$$P_c(I_n) = \frac{2\sigma\cos\theta_A}{r_p} - \sigma\sum_{i=1}^n b_i x_i$$

Thermodynamically-based Network Model

$$A_{w} = P_{filling} \times A_{w,max} + (1 - P_{filling}) \times A_{w,min}$$
$$A_{nw} = (1 - P_{filling}) \times A_{nw,max} + P_{filling} \times A_{nw,min}$$

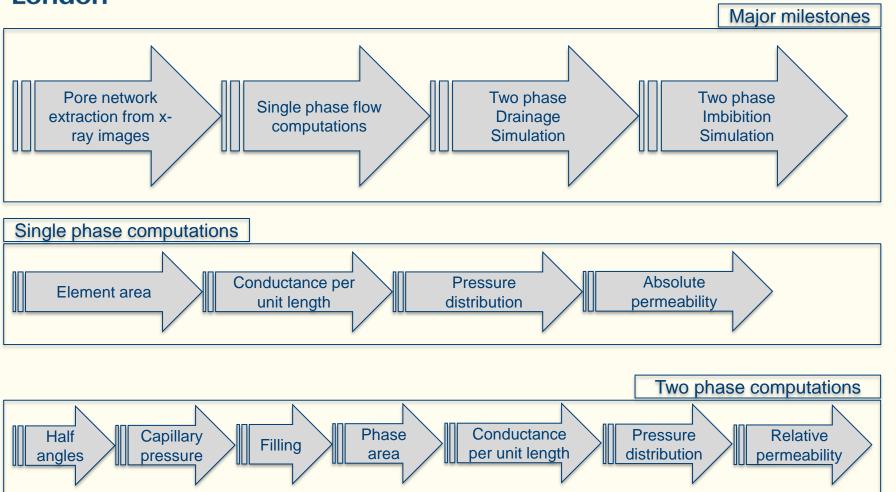
$$g_{w} = P_{filling} \times g_{w,max} + (1 - P_{filling}) \times g_{w,min}$$
$$g_{nw} = (1 - P_{filling}) \times g_{nw,max} + P_{filling} \times g_{nw,min}$$

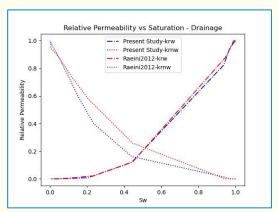
In this proposed model, area occupied by each phase and the conductance of each phase in each element will depend on the probability of filling.

In traditional pore-scale network model, all elements either have a probability of 0 (not filled) or 1 (filled).

In this proposed model, the probability is [0, 1]. The model should agree with the traditional model where there is no intermittency.

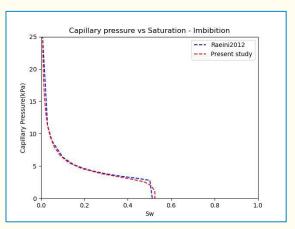
Quasi-static Network Model

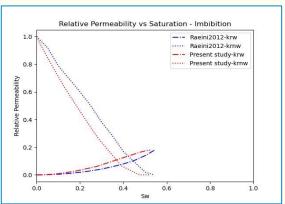




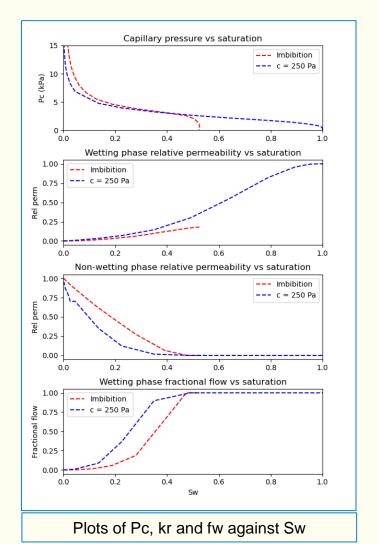
Primary drainage results

Simulation results quasi-static network model



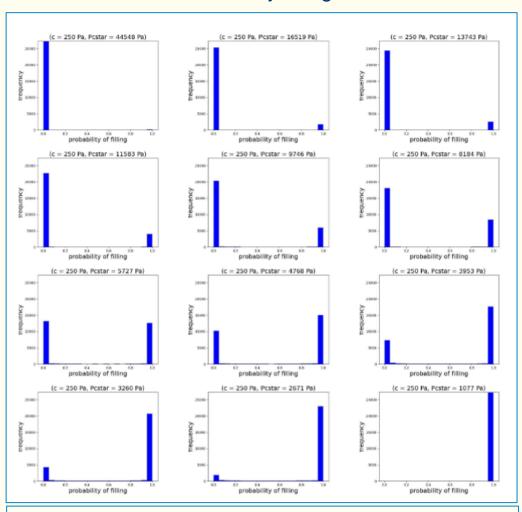


Secondary imbibition results

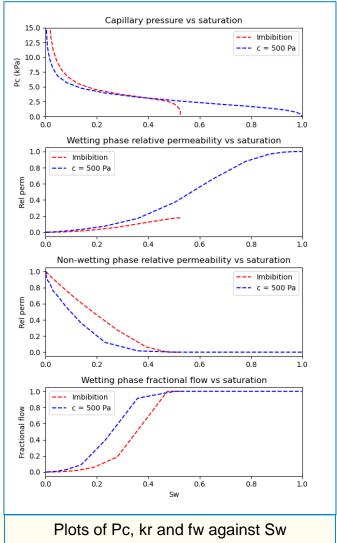


Simulation results

Probability filling when c = 250 Pa

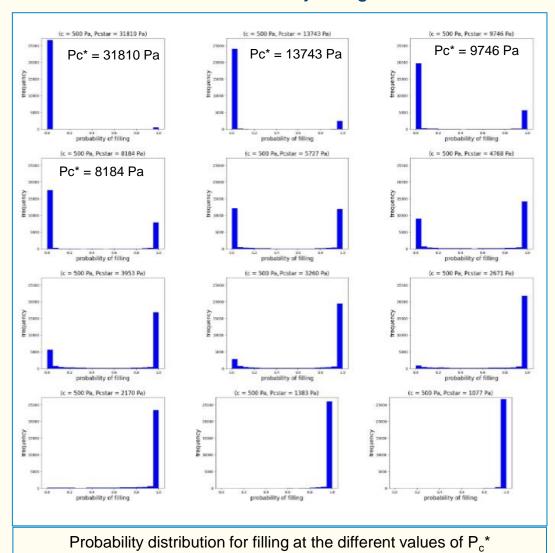


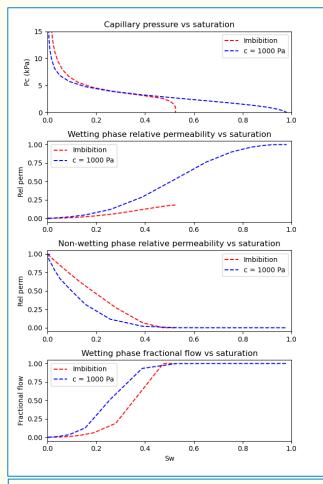
Probability distribution for filling at the different values of P_c^{\star}



Simulation results

Probability filling when c = 500 Pa

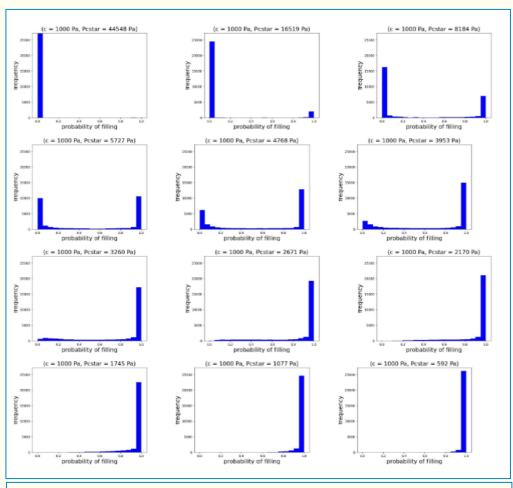




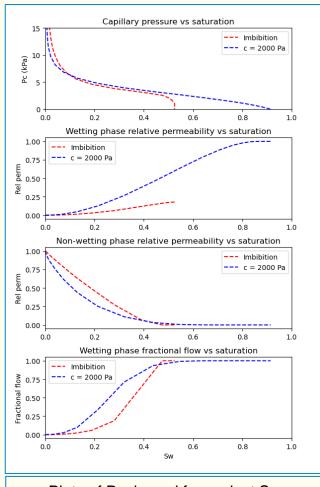
Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 1000 Pa



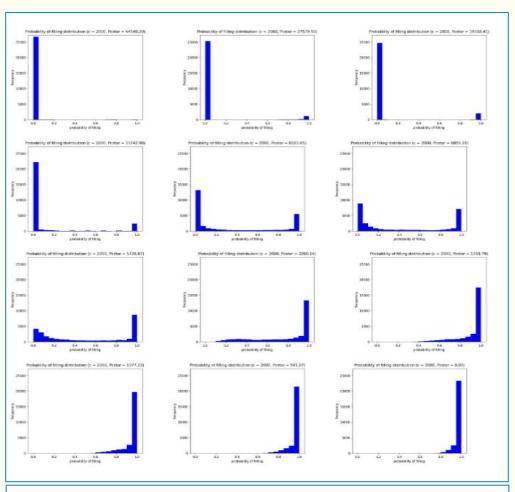
Probability distribution for filling at the different values of Pc*

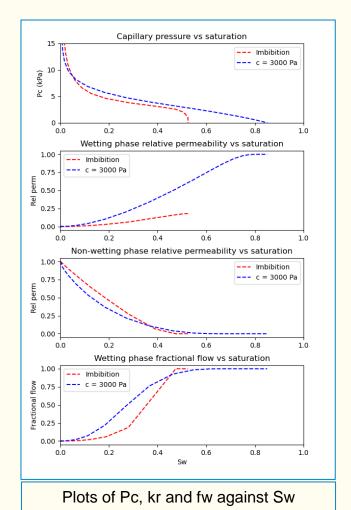


Plots of Pc, kr and fw against Sw

Simulation results

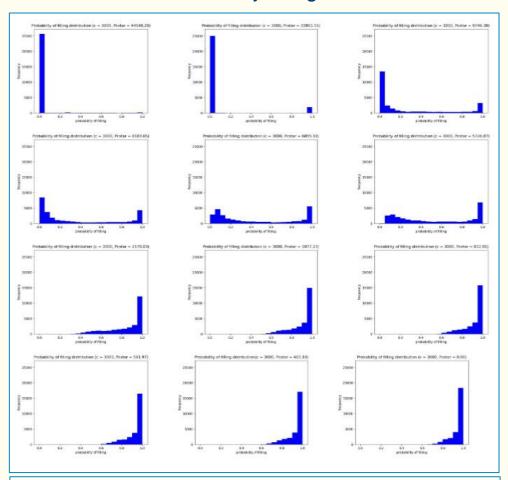
Probability filling when c = 2000 Pa

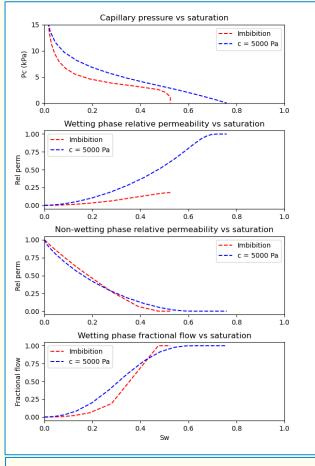




Simulation results

Probability filling when c = 3000 Pa

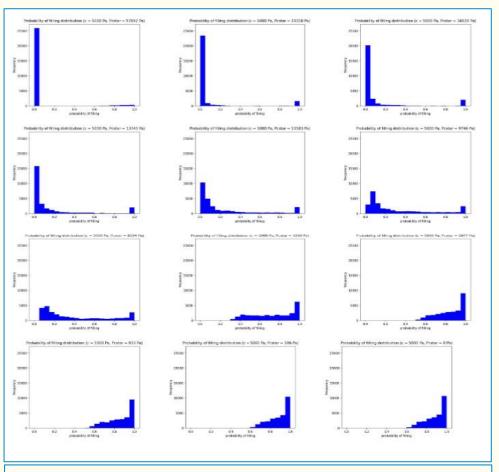




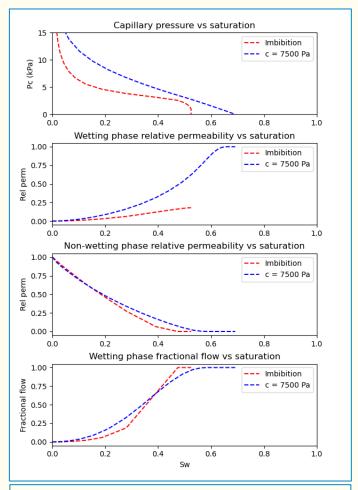
Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 5000 Pa



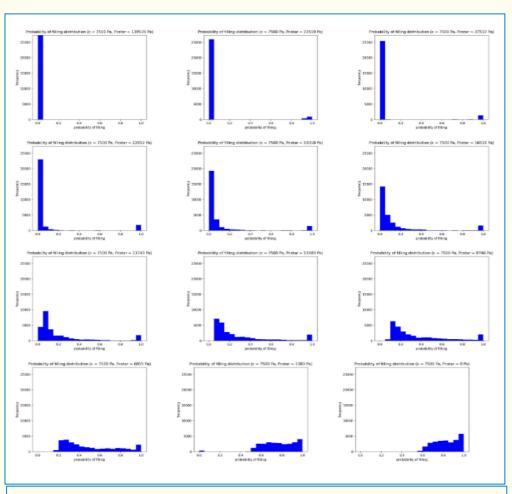
Probability distribution for filling at the different values of Pc*



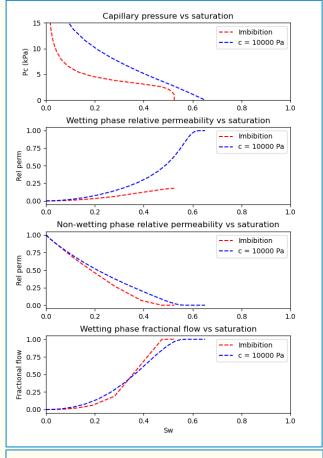
Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 7500 Pa



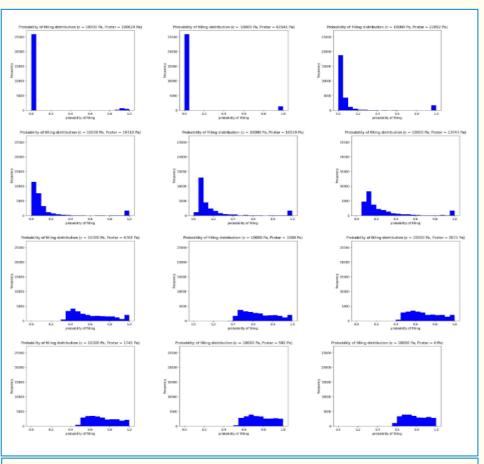
Probability distribution for filling at the different values of Pc*

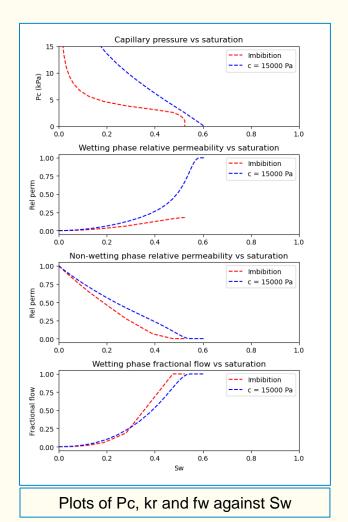


Plots of Pc, kr and fw against Sw

Simulation results

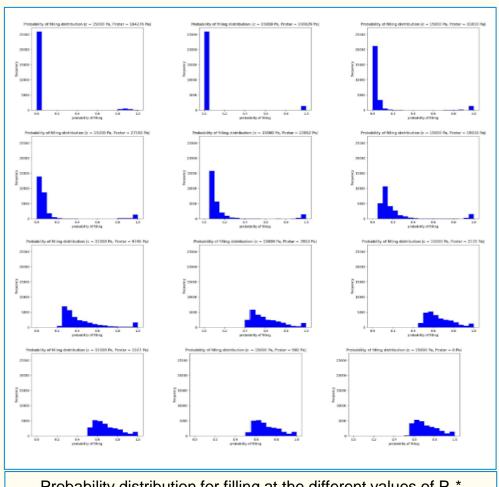
Probability filling when c = 10000 Pa

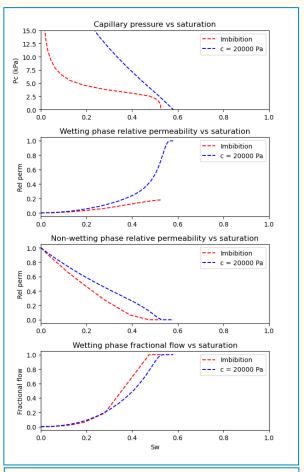




Simulation results

Probability filling when c = 15000 Pa

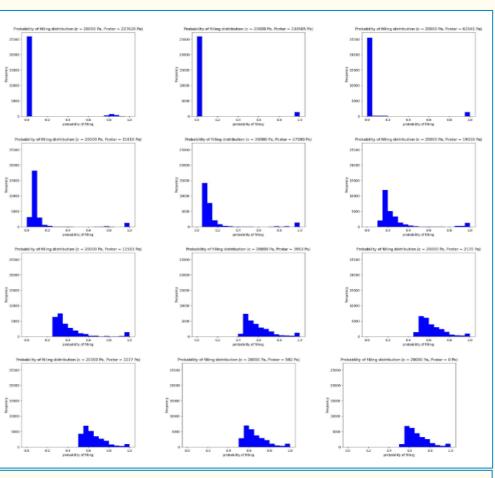




Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 20000 Pa



Probability distribution for filling at the different values of Pc*

References

Gesho, M. (2017). Dynamic Pore Network Modeling of Two-Phase Flow Through Fractured Porous Media: Direct Pore-to-Core Upscaling of Displacement Processes.

Hansen, A., Flekkoy, E.G., Sinha, S. and Slotte, P.A. (2022). A Statistical Mechanics for Immiscible and Incompressible two-phase Flow in Porous Media.

Jayakumar, A., Singamneni, S., Ramos, M.V., Al-Jumaily, A.M., & Pethaiah, S.S. (2017). Manufacturing the Gas Diffusion Layer for PEM Fuel Cell Using a Novel 3D Printing Technique and Critical Assessment of the Challenges Encountered. *Materials*, 10.

Raeini, A.Q., Blunt, M.J. & Bijeljic, B. (2012). Modelling two-phase flow in porous media at the pore scale using the volume-of –fluid method. *Journal of Computational Physics*, 231(17).

Spurin, C., Bultreys, T., Bijeljic, B., Blunt, M.J. & Krevor, S. (2019). Intermittent Fluid Connectivity during two-phase Flow in a heterogenous Carbonate Rock. Physical Review E, 100.

Tallakstad, K.T., Knudsen, H.A., Ramstad, T., Lovoll, G., Maloy, K.J., Toussaint, R. and Flekkoy, E.G. (2009). Steady-state two-phase flow in Porous Media: Statistics and Transport Properties. Physical Review Letters, 102.

Tallakstad, K.T., Lovoll, G., Knudsen, H.A., Ramstad, T., Flekkoy, E.G., Maloy, K.J., and Toussaint, R. (2009). Steady-state two-phase flow in Porous Media: An Experimental Study. Physical Review Letters, 80.

Zhang, Y., Bijeljic, B., Gao, Y., Lin, Q. and Blunt, M.J. (2021). Quantification of Nonlinear Flow in Porous Media. *Geophysical Research Letters*, 48.